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An experimental wavefunction is one that has an assumed form and that is also

®tted to experimental measurements according to some well de®ned procedure.

In this paper, the concept of extracting wavefunctions from experimental data is

critically examined and past efforts are reviewed. In particular, the importance

of scattering experiments for wavefunction ®tting schemes is highlighted in

relation to the more familiar model, the Hamiltonian paradigm. A general and

systematically improvable method for ®tting a wavefunction to experimental

data is proposed. In this method, the parameters in a model wavefunction are

determined according to the variational theorem but subject to an imposed

constraint that an agreement statistic between the calculated and observed

experimental data has a certain acceptable value. Advantages of the method

include the fact that any amount of experimental data can be used in the ®tting

procedure irrespective of the number of parameters in the model wavefunction,

the fact that a unique answer is obtained for a given choice of the model

wavefunction, and the fact that the method can be used to model different

experiments simultaneously. The wavefunction ®tting method is illustrated by

developing the theory for extracting a single-determinant wavefunction for

a fragment of a molecular crystal, using data obtained from elastic X-ray

scattering data. Effects due to thermal motion of the nuclei, secondary

extinction of the X-ray scattering and different choices for the crystal

fragment are treated.

1. Introduction

This article is concerned with electronic wavefunctions and

reduced density matrices determined from experimental data.

To distinguish these from wavefunctions or density matrices

calculated from some approximation to the SchroÈ dinger

equation, they will be called `experimental model wavefunc-

tions' or `experimental model density matrices' or, more

simply, just `experimental wavefunctions'.

The determination of wavefunctions from experimental

data has a long history ± over two decades ± and, according to

Massa et al. (1995), the procedure whereby crystallographic

data are integrated with wavefunction calculations is mature

enough to deserve the name `quantum crystallography'.

Despite these assertions, there is not much literature that

describes the motivation for or potential bene®ts to be gained

from an experimental wavefunction analysis. Nor is it clear

that there is any relationship between an experimental

wavefunction analysis and other more traditional quantum-

theory-based methods of data analysis. Even the de®nition of

an experimental wavefunction, and why it should be closely

related to scattering experiments, is not clear.

This paper therefore gives a general background to the

concept of experimental wavefunction analysis. After this

preparation, a systematically improvable procedure for

extracting experimental wavefunctions is proposed. The

procedure is speci®cally illustrated by developing the theory

necessary to extract an experimental wavefunction for frag-

ments of molecular crystals determined from elastic X-ray

scattering data.

2. Experimental wavefunctions

2.1. The possibility of determining an experimental wave-
function

The wavefunction is the fundamental entity that appears in

the SchroÈ dinger picture of quantum theory. It is the most

compact way to represent all information contained in a

system. It is well known that observables are obtained from

the wavefunction as expectation values of operators, after an

integration over basis states. Thus, an experimental wave-

function can only be determined indirectly using physical

observables. It is also well known that a wavefunction is only

determinable to within a gauge transformation. In this paper,

wavefunctions differing by such a transformation are regarded

as identical, since a knowledge of one wavefunction implies a



knowledge of all wavefunctions related to it by the gauge

transformation.

The following question now arises: is it possible, even in

principle, to determine the wavefunction from the experi-

mental measurement of some observable or set of observa-

tions? For many-electron systems, which are the subject of

this paper, the answer to this question is a provisional `yes'.

Hohenberg & Kohn (1964) showed that, within non-relati-

vistic quantum theory, there is a one-to-one mapping between

the ground-state electron density ± an `observable' from the

X-ray experiment ± and the exact ground-state wavefunction.

Unfortunately, they were not able to give any systematic way

to elucidate the nature of this functional relation or how it

may be inverted to obtain the wavefunction from the density.

Nevertheless, this establishes the density as an important

quantity for determining any wavefunction.

Even if there was a known procedure to determine the

wavefunction from a given electron density, the unavoidable

presence of experimental errors means that there is always a

range of acceptable wavefunctions which would be compatible

with the measurements. In fact, even with perfect data, there

would remain the problem that the electron density is a

continuous function, requiring an in®nite number of

measurements to de®ne.

A ®nal proviso is that the electron density is not, strictly, an

observable. In fact, the electron density emerges as an

`observable' related to the measured X-ray scattering data

only after a detailed analysis of the SchroÈ dinger equation for

the entire crystal in which many approximations have been

made ± including, for example, the Born±Oppenheimer

approximation, the ®rst Born approximation, harmonic

approximation for the nuclear potential and the rigid pseudo-

atom approximation for the electron density (Stewart, 1977;

Stewart & Feil, 1980). Only with these approximations in

mind, can it be said that the elastic X-ray diffraction experi-

ment on a crystal yields the magnitude set of structure factors

F�h�, which are related to the electron density ��r� in the unit

cell (averaged over the thermal motions of the nuclei) by the

Fourier transform,

F�h� � R
cell

��r� exp�2�ir � Bh� dr; �1�

where B is the reciprocal-lattice matrix, depending only on the

shape of the crystal unit cell and h � �h1h2h3� are integers

called the Miller indices which describe the direction of the

scattered X-ray beam. [Of course, other approximations can

be made for the purposes of charge-density analysis ± for

example, anharmonic nuclear potentials, bond functions and

so on ± but no-one has shown that, when such approximations

are made within a scheme starting from the SchroÈ dinger

equation for the crystal, the concepts of a `structure factor' or

`thermally smeared charge density' de®ned in (1) still emerge,

or whether in fact new physical quantities are required.]

While the main focus here is the X-ray scattering experi-

ment, other scattering experiments may also be pro®tably

analyzed using experimental wavefunctions. The Compton

scattering experiment, which yields electron momentum

distribution information, is one example (Williams, 1977;

Cooper, 1985). Structure-factor information can also be

obtained, in some cases with extremely high accuracy, using

electron scattering measurements. Multiple electron scat-

tering, such as the (e, 2e) scattering experiment can yield

momentum-density information but for the Dyson orbitals for

a system (McCarthy & Weigold, 1991). The polarized neutron

diffraction experiment yields information regarding the

current density distribution in a system (Marshall & Lovesey,

1971). In this case, it should be mentioned that, in the relati-

vistic quantum theory, Rajagopal & Callaway (1973) have

shown that there is a one-to-one correspondence between

both the charge density and the current density (the four

current) and the many-electron wavefunction.

2.2. The motivation for determining an experimental
wavefunction

Assuming that one could begin to extract a wavefunction

from experiment, why bother to do it? Despite the history

associated with this problem, this is an important issue that is

seldom addressed in the literature.

The most important reason is simply to condense the

observed data from the experiment into some form that is of

fundamental signi®cance. Since quantum theory is the best

microscopic theory available at this time and the wavefunction

is the fundamental entity in quantum theory, it makes sense to

obtain an experimental wavefunction instead of another

model object constructed by appeal to arbitrary physical

considerations. For example, an experimental wavefunction

analysis obtained from X-ray data would be preferable to a

`multipole' analysis, which assumes the electron density can be

decomposed into aspherical pseudo-atomic contributions

(Kurki-Suonio, 1968; Hirshfeld, 1971; Stewart, 1972; Hansen &

Coppens, 1978). Such a multipole analysis is necessarily

limited, by its very construction, in the types of predictions it

can make. For example, the multipole-analysis technique does

not directly obtain kinetic energy densities, Compton pro®les

or any other property that requires the density matrix rather

than the density itself. [It is possible to obtain all properties

indirectly from a multipole analysis ± since according to the

Hohenberg±Kohn theorem the density is suf®cient to de®ne

the ground-state wavefunction and hence all ground-state

properties. In most cases, such functionals are not known; see,

however, recent work by Abramov (1997) for functionals that

can yield semiquantitatively the kinetic energy density from

the density at certain special points in space.]

Apart from being theoretically desirable, it is also useful to

have an experimental wavefunction because exact wavefunc-

tions are not usually available. Even if approximate wave-

functions are available, they may still deviate in key respects

in reproducing the observed data. Once the experimental

wavefunction is available, it can be used to predict additional

properties of interest that are only indirectly related to those

used for ®tting the wavefunction.

Another important reason for extracting wavefunctions

from charge-density data has already been suggested by the
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discussion above: to learn something of the relationship

between the Hohenberg±Kohn mapping between the electron

density and the ground-state wavefunction. Indeed, some

investigators have developed methods to extract Kohn±Sham

(Kohn & Sham, 1965) wavefunctions from theoretically

generated charge-density data precisely for these reasons. The

solution of the Hohenberg±Kohn mapping problem is poten-

tially of great practical signi®cance since it would enable

rigorous quantum-mechanical calculations using only the

electron density as the basic variable, a relatively simple three-

dimensional function ± instead of the complex many-dimen-

sional wavefunction.

It must be kept in mind, though, that a study of the rela-

tionship between the density and the wavefunction is not

particularly interesting if one already has an accurate wave-

function at hand (obtained, say, by ®tting) for the system

under consideration. In this way, a wavefunction that incor-

porates experimental X-ray data and that produces accurate

observables is potentially a very powerful technique for the

characterization of materials.

2.3. Experimental wavefunctions versus model Hamiltonians

It is enlightening to illustrate these ideas in more detail by

comparison to another related and perhaps more familiar

paradigm ± the model Hamiltonian paradigm. From a theor-

etical perspective, the idea is to analyze the spectrum of some

model Hamiltonian that is derived from a consideration of the

important physical interactions in the system. The spectrum of

the model Hamiltonian can then be compared to observed

spectroscopic measurements to check if the a priori assumed

interactions used to derive the model Hamiltonian would lead

to predictions consistent with what is observed. On the other

hand, from an experimental point of view, the reverse proce-

dure can be used as a means of condensing data ± that is,

condensing the observed spectrum into the parameters that

describe the model Hamiltonian. This program is schemati-

cally represented by

model Hamiltonian !predicted/observed spectrum:

In favorable cases, the parameters in the model Hamiltonian

can be compared directly to theoretical calculations in an

attempt to consolidate the agreement between theory and

experiment (or not, as the case may be). More pragmatically,

the model Hamiltonian can be used to reliably predict related

properties that were not observed. Vibrational spectroscopy is

one area where this approach has been developed to a high

degree (Papousek & Aliev, 1982). In any case, the key point to

note is that, where model Hamiltonians are used to analyze

data, the emphasis is on the energies of many different wave-

functions. One is not so interested in the model wavefunctions

associated with the model Hamiltonian.

On the other hand, diffraction experiments offer an alter-

native view. In these experiments, information about the

density of a particular property in some space is given for one

single wavefunction. In this case, the interest is not so much in

the model Hamiltonian or its spectrum but in the ®tted

(experimental) wavefunction itself and the corresponding

property density. This program is indicated by:

model wavefunction ! predicted/observed

scattering pattern:

Thus, the experimental wavefunction analysis is seen as a

natural counterpart to the model Hamiltonian analysis in the

same way that the spectroscopic experiment is the natural

counterpart to the diffraction experiment.

In the above discussion, we have chosen to highlight the

differences between the two approaches: experimental wave-

functions versus model Hamiltonians. There is also a close

connection. In fact, if one has a model Hamiltonian, a wave-

function can usually be calculated from it, and then property

densities ± including the density of one particular state ± can

be obtained. Similarly, in trying to develop a scheme to

determine the parameters in a model experimental wave-

function, one is usually led to derive an eigenvalue equation

involving an effective model Hamiltonian associated with the

experimental wavefunction (this is certainly the case for the

example we consider later on). It might then be possible to

obtain the energies associated with other states from this

effective model Hamiltonian, and hence determine a spec-

trum.

2.4. General nature of the problem of determining an
experimental wavefunction

Extracting an experimental wavefunction from X-ray scat-

tering data can be viewed as an `inverse problem' (Tarantola,

1987; Press et al., 1992). That is, the problem of determining

the values of some model parameters (here the wavefunction

parameters) from a given set of observations. The forward

problem is to determine the values of the observation from the

model with a given set of parameters.

There are two cases that can arise. The ®rst is when there

are more data than parameters in the model, which is called

the overdetermined model. In this case, the problem can be

dealt with by a least-squares procedure. The second and more

interesting case is when there are less data than parameters,

called the underdetermined problem. In this case, an in®nite

number of solutions are possible. In order to solve the

problem uniquely, one or more `reasonable' a priori assump-

tions must be made. The extraction of wavefunctions from

experimental data falls into this latter category.

2.5. Related inverse problems

It is appropriate to mention here other related methods for

incorporating scattering data directly into the modeling

procedure. Brunger et al. (1987) have described and applied

with some success a procedure where the X-ray data for

protein molecules has been used to constrain a molecular

mechanics simulation to yield reasonable geometric structures.

In a similar vein, Rosi-Schwartz & Mitchell (1994) have

obtained realistic models for amorphous polymeric systems



using a `reverse Monte Carlo' procedure in which X-ray data

are used in conjunction with simple constraints on coordina-

tion number and bond length.

2.6. Methods for extracting an experimental wavefunction
from electron-density data

There are essentially two different kinds of approaches used

to determine an experimental wavefunction:

(I) Fitting an assumed form for the wavefunction or density

operator to the data, perhaps forcing some additional

quantum-mechanical constraint on the wavefunction or

density operator.

(II) Exact methods to obtain a density matrix using linearly

independent product functions.

Pioneering investigations of the ®rst type were made by

Clinton and coworkers in 1969 (Clinton, Nakleh & Wunder-

lich, 1969; Clinton, Galli & Massa, 1969; Clinton, Henderson

& Prestia, 1969; Clinton & Lamers, 1969; Clinton, Galli,

Henderson et al., 1969). The a priori assumptions that the

densities were required to obey were: choosing a semi-

empirical rigid pseudo-atom functional form for the density

(Clinton, Nakleh & Wunderlich, 1969); idempotency condi-

tions on the density (that is, conditions that the density

operator come from a single-determinant wavefunction)

(Clinton, Galli & Massa, 1969); density operators obtained by

coordinate scaling to satisfying a combined Hellman±

Feynman theorem and virial theorem (Clinton, Henderson &

Prestia, 1969); idempotency conditions combined with Parr's

integrated Hellman±Feynman theorem (Clinton & Lamers,

1969); idempotency conditions combined with local energy

constraints ± to constrain the density operator to a desired

eigenvalue equation (Clinton, Galli, Henderson et al., 1969).

The idempotency conditions were later combined with the

cusp conditions as a constraint on the density operator

(Clinton & Massa, 1972a).

From these early studies, it can be seen that there is a strong

emphasis on the single determinant as an assumed form for

the wavefunction. It was noted that the single-determinant

wavefunction could be extracted from X-ray data (Clinton &

Massa, 1972b; Clinton et al., 1973). In particular, the impor-

tance of experimental errors was recognized and taken into

account for the ®rst time by using weighting factors. Steepest-

descent algorithms were introduced to solve the problem of

constraining idempotency conditions and agreement with

experimental data. Since then, there have been minor exten-

sions to the method: to cover the case of open-shell single-

determinant wavefunctions (Frishberg & Massa, 1981); to

devise a simpli®ed steepest-descent algorithm for obtaining

the single-determinant wavefunction (Pecora, 1986); another

formalism based on explicit inclusion of the idempotency

constraint using Lagrange multipliers (Tanaka, 1988); and the

use of simulated-annealing methods to determine the single-

determinant wavefunction (Howard et al., 1994). It was also

shown how correlation energies could be obtained from a

®tted single-determinant wavefunction (Massa, 1986; Cohen et

al., 1986).

There have been many applications of the method using

theoretically generated data, in keeping with Clinton's original

work. The value of these studies is that they establish what

might be expected if real experimental data were readily

available. Thus, Frishberg & Massa (1981, 1982) considered

®tting wavefunctions to theoretically determined X-ray

structure factors taken from near-exact wavefunctions for Li,

Be, H and H2, and found that one-electron properties,

including the kinetic energy, were improved over variational

calculations. Two-electron properties, however, were not.

Another study by Frishberg (1986) on the Be atom shows that

a wavefunction ®tted to theoretically generated X-ray struc-

ture factors is in many cases, for a number of properties, better

than a density produced from the natural orbitals of highest

occupation ± the so-called `best density matrix'. Boehme & La

Placa (1987) have also investigated molecular hydrogen, but

this time the theoretically generated structure factors were

chosen to simulate the molecule in a crystal lattice. Again, it

was found that properties such as the bond energy, electric

®eld, electric ®eld gradient and quadrupole moment accu-

rately reproduced the results from the original wavefunction.

Unfortunately, there have been relatively few studies using

real X-ray data. The ®rst was of the beryllium crystal (Massa et

al., 1985). The densities obtained from the ®tted wavefunction

were in good agreement with the best available calculations.

Pecora (1986) demonstrated an interesting application of his

steepest-descent constrained method to reconstruct the

momentum density for the Cu92Ge8 alloy measured by posi-

tron annihilation. Aleksandrov et al. (1989) obtained a ®tted

single-determinant wavefunction for silicon and diamond.

They reproduced values for `forbidden' re¯ections not used in

the ®tting procedure and also calculated total energies per

atom, binding energies and Compton pro®les. All were in

reasonable agreement with experiment. An interesting series

of studies was conducted by Tanaka, Marumo and co-workers,

who extracted a partial atomic wavefunction comprised of the

d orbital manifold in transition-metal complexes (Tanaka et

al., 1979) using a least-squares-®tting method. In particular,

atomic d populations were obtained for the series KXF3,

X � Cu, Co, Mn, Ni, Fe (Tanaka et al., 1979; Kijima et al.,

1981, 1983; Miyata et al., 1983). In some cases, the electronic

state was unambiguously determined and, in the case of

X � Cu, a Jahn±Teller distortion parameter was also obtained

(Tanaka et al., 1979). The possibility of d±s hybridization on

the Cu atom in CuAlO2 due to chemical bonding effects was

also considered. It was concluded that the observed X-ray data

did support such a bonding mechanism, supporting earlier

conjectures (Ishiguro et al., 1983). Howard and co-workers

have ®tted single-determinant wavefunctions for formamide

using a simulated-annealing technique (Howard et al., 1994).

While they were restricted to the use of a small basis set, owing

to computational requirements and perhaps a lack of data,

large differences between the electron distributions from

®tted wavefunctions and those from theoretical calculations

were observed. This study is intriguing, especially in the light

of their earlier work (which, however, involved only calculated

wavefunctions) demonstrating a signi®cant dipole enhance-
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ment, owing to crystal effects, in the non-linear optical

material 2-methyl-4-nitroaniline (Howard et al., 1992).

The use of a single-determinant wavefunction for ®tting

observed data is obviously limited. Schmider et al. (1990, 1992)

proposed that the one-particle density matrix be constructed

to reproduce a set of observed one-particle expectation values,

such as may be obtained in an X-ray experiment. Instead of

the idempotency condition, the density operator is required to

come from any valid antisymmetric wavefunction, i.e. to be N

representable. (The conditions for N representability of the

one-particle density matrix are known and are simply that the

eigenvalues of the density matrix lie between zero and one.)

Cassam-ChenaõÈ (1995) also proposes a similar approach and

derives N-representable density matrices. However, he

proposes that the density matrix be expanded in terms of a few

selected wavefunctions from ab initio quantum-chemical

calculations. The advantages are that there are much fewer

parameters to be optimized and the resulting density is easier

to interpret in physical terms. This idea has been applied in

analyzing the magnetization density in the CoCl2ÿ
4 crystal

(Cassam-ChenaõÈ et al., 1996).

Unfortunately, it has been largely forgotten or ignored that

Gilbert (1975) has shown that there are an in®nite number of

single determinants that can be constructed to yield a given

reasonable density. A simple extension of Gilbert's construc-

tion shows that there are also an in®nite number of N-rep-

resentable one-particle reduced-density matrices that can

reproduce a desired electron-density distribution. Indeed, this

is the basis of some formulations of the density-functional

theory of electronic structure (see also the comments below

regarding Harriman's work). Thus, according to Gilbert,

almost any density is acceptable according to quantum theory.

Fitting to the density alone is not a suf®cient criterion for

extracting a meaningful wavefunction.

In this context, the important work of Henderson &

Zimmermann (1976) must be highlighted. These authors

suggested that, of all the single determinants that are

compatible with a given density, the unique one that should be

chosen is that which minimizes the Hartree±Fock energy.

Using Clinton's technique, the Hartree±Fock solution was

modi®ed in a quasi-continuous fashion to yield the desired

constrained energy solution. They applied this technique to

the LiH system using theoretically synthesized data.

Later, Levy & Goldstein (1987) and also Gritsenko &

Zhidomirov (1987) suggested that, in the case where a given

wavefunction is not uniquely determined from the data, a

reasonable choice might be to choose that single-determinant

wavefunction which minimizes the kinetic energy. This is

simply the constrained search de®nition for the Kohn±Sham

determinant widely used in the density-functional theory of

electronic structure. This idea was further developed in an

important series of papers by Zhao, Parr and Morrison (Zhao

& Parr, 1992, 1993; Zhao et al., 1994). These authors devel-

oped methods to extract the Kohn±Sham determinant for any

given density in a ®nite basis set. They noticed that the Kohn±

Sham orbitals for the beryllium atom ± derived from theor-

etically generated charge densities ± were nearly indis-

tinguishable from the Hartree±Fock orbitals. This supported

the idea that the Kohn±Sham wavefunction based on a kinetic-

energy minimization criterion is a physically meaningful

wavefunction. Indeed, these authors suggested that this might

be a solution to extracting meaningful wavefunctions from

experimental data.

It seems clear, though, that, given the choice of two model

wavefunctions, both of which reproduce a given experimental

electron-density distribution but differ in that one minimizes

the Hartree±Fock energy while the other minimizes only the

kinetic energy, the former would be preferred since some

attempt at least is made within the model to account for the

external potential and the electron±electron interactions. On

this reasoning, one of the authors has pursued Henderson &

Zimmerman's idea (Jayatilaka, 1998) and proposed a more

practical implementation based on a formalism similar to that

used by Tanaka (1988). In fact, Levy (1979) has shown that the

exact wavefunction is the one that minimizes the kinetic

energy plus the electron±electron repulsion energy while

reproducing a given electron distribution. Therefore, the

approach of Jayatilaka and Henderson & Zimmerman can be

viewed as an implementation of Levy's idea in the case where

the exact wavefunction is instead approximated by a single

determinant.

A very different approach has been proposed by Kryachko,

Koga and co-workers (Kryachko et al., 1987; Koga et al., 1989).

Here, the idea is to modify a reasonable initial wavefunction

(the promolecule wavefunction) via a series of continuous

point transformations of three-dimensional space in such a

way that the `stretched' wavefunction yields a given electron

distribution. Based on the proposed homeomorphism between

the gradient electron-density vector ®eld and the gradient

nuclear potential-energy vector ®eld, a simple model wave-

function was proposed (Tal et al., 1980; Parr & Berk, 1981).

However, it does not appear to have been tested in practice.

A similar method was used to reconstruct the momentum

densities in the He atom, using theoretically generated data

(Koga et al., 1989).

Other techniques have been proposed by Nyden & Parr

(1983) and March and co-workers (Dawson & March, 1984;

March & Nalewajski, 1987; Nagy & March, 1989; Holas &

March, 1991) for extracting wavefunctions and other quan-

tities important in the density-functional theory of electronic

structure from the electron distribution. These methods have

not been greatly developed or explored within the context of

real data. Thus, a problem that remains with these works is

the suitable treatment of experimental uncertainties in the

observed data.

Methods of type II are now considered, where density

matrices can in principle be extracted exactly. Harriman

(1983) showed that, if the density matrix is expanded in a basis

of product functions [as in equation (6)], a unique result can

be obtained for the density matrix obtained from a given

density only if the product pairs are linearly independent

(Harriman, 1983, 1986). Unfortunately, commonly used basis

sets will almost always have linear dependencies, as was

already encountered in early attempts by Coppens and co-



workers to use the product pair form to ®t experimental

charge densities (Coppens, Willoughby, & Csonka, 1971;

Coppens, Pautler & Grif®n, 1971; Jones et al., 1972). It is

therefore surprising that only quite recently has a study by

Schwarz & MuÈ ller (1990) appeared that investigates the linear

dependence problem for the popular Gaussian-type basis

functions. Their conclusions are not very encouraging. Even

when trivial linear dependencies are eliminated, the product

functions are still nearly linearly dependent. Morrison

proposed a technique to ®nd a well de®ned linearly inde-

pendent product basis and con®rmed the linear dependence

problems and also found that the density matrices obtained

this way yielded kinetic energies that were too small

(Morrison, 1987). The results were also against what might

have been expected, based on the work of Levy & Goldstein

(1987).

2.7. Methods for extracting an experimental wavefunction
from other kinds of experimental data

Apart from the early work of Clinton and co-workers

(Clinton, Nakleh & Wunderlich, 1969), where it was proposed

that potential-energy curve data obtained from spectroscopic

experiments could be used to obtain one-particle density

matrices, there has been very little work concerning the

extraction of wavefunctions from experiments other than the

X-ray scattering experiments. The authors are only aware of

the least-squares method of Nicholson et al. (1999) to extract

the Dyson orbitals from (e, 2e) scattering experiments, applied

to determine the orbitals of the organic molecules 1,2-

propadiene, trans-1,3-butadiene, [1.1.1]propellane and cyclo-

propane (Nicholson et al., 1998). These authors showed that

the ®tted orbitals for these molecules were signi®cantly

different to the calculated Hartree±Fock orbitals, although in

all cases the Hartree±Fock orbitals were a large component of

the ®tted orbital. They suggest that a wavefunction comprised

of these orbitals, since it is derived from experiment, should

lead to `more accurate molecular-property information'. In

fact, Adcock et al. (1998) have performed DFT calculations on

these molecules using a variety of basis sets, and have shown

that those basis sets which best reproduced the (e, 2e) data

were also those which yielded the best molecular geometrical

parameters compared to experiment.

3. A systematically improvable method for extracting
experimental wavefunctions

It is clear from the review above that there are very few

methods for extracting experimental wavefunctions that

simultaneously satisfy the criteria of (i) uniqueness, (ii) correct

treatment of experimental error, (iii) systematic and con-

trolled improvement in the model. To address these issues, the

following paradigm is proposed:

(a) Select an appropriate Ansatz for the wavefunction for

the system so that that the wavefunction can be determined by

a variational procedure.

(b) Calculate the desired experimental properties from this

wavefunction and evaluate the agreement between theory and

observation according to a desired agreement statistic. The

agreement statistic will be a function of the variational

parameters in the wavefunction.

(c) If the agreement is not acceptable, use the Lagrange

multiplier method to add a constraint to the variational

procedure and adjust the Lagrange parameter to get the

desired agreement with observed data.

(d) Use the experimental wavefunction for the required

purpose.

The method is systematically improvable in the following

sense: if one is not satis®ed with the agreement with experi-

ment after step (c), simply return to step (a) and choose a

better starting Ansatz for the wavefunction. In general, a

wavefunction with more variational parameters is to be

regarded as `better', but this is somewhat subjective. An

Ansatz with fewer parameters and containing more `physical

insight' may produce better results. Here, `physical insight' is

quanti®ed by comparing, for each Ansatz, the results of many

similar calculations with experiment for properties that one

is interested in. In this way, one decides empirically which

Ansatz is better before any ®tting procedure is attempted.

4. Experimental wavefunctions from elastic X-ray
scattering experiments

The proposed procedure is now illustrated in the speci®c case

of extracting an experimental wavefunction from elastic X-ray

scattering data.

4.1. Non-interacting fragment model for the crystal

The ®rst step is to devise a suitable Ansatz for the crystal

wavefunction, from which the charge density can be derived.

Since our interest here is in crystals of molecules and in the

effects of the crystal environment on the isolated molecular

units, it is appropriate to use wavefunctions 	unit for a mol-

ecular unit or maybe a small set of molecular units. These

wavefunctions are then assumed to be non-interacting and

copied through the crystal-by-crystal symmetry operations.

We call this approximation the non-interacting fragment model

for the electron density in the crystal. The non-interacting

Hartree±Fock fragment model involves the further approxi-

mation that the wavefunction for the molecular unit 	unit is

taken to be a single determinant.

4.2. Calculation of the X-ray structure factors

We ®rst consider the case where each non-interacting

fragment is a symmetry-unique portion of the unit cell. Then

the cell charge density can be decomposed into a sum of Nf

fragment charge densities � j, each related by unit-cell

symmetry operations fSj; rjg to a reference charge density for

the molecule �0,
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�cell�r� �PNf

j�1

� j�r�; �2�

� j�r� � �0�Sÿ1
j �rÿ rj��; �3�

There is no approximation in these equations. An approxi-

mation is introduced when �0 is taken to be the charge density

from an isolated fragment calculation,

�0�r� � Ne

R j	unit�r; r2; . . . ; rNe
�j2 dr2 . . . drNe

; �4�
where Ne is the number of electrons in the fragment wave-

function. This will be a good approximation if the fragment is

relatively unmodi®ed in the crystal environment.

For practical calculations, �0 is usually obtained in a basis

set fg�g using the orbital approximation. Assume now that �0

is given by a Hartree±Fock calculation (i.e. the non-interacting

Hartree±Fock fragment model). In the Hartree±Fock method,

the wavefunction is a single determinant made from orbitals.

The spatial parts of the orbitals are expanded in the basis set

as

�i �
P
�

c�ig�: �5�

The reference molecule charge density is then given as

�0�r� � PNocc

�;�

P��g��r�g��r�; �6�

where P�� � 2
PNocc

i c�ic�i is the closed-shell density matrix

and Nocc is the number of occupied orbitals in the fragment.

(Only closed-shell systems are considered here, which are by

far the most common.) The desired result for the calculated

structure factors is obtained by substituting the above equa-

tion in (2), and then substituting in (1), to get

Fc�h� � tr PI�h�: �7�
I�h� are the Fourier transforms of the basis-function pairs

summed over all equivalent unit-cell sites,

I���h� �
PNm

j

exp�2�irj�

� R g��r�g��r� expf2�ir � B��B�ÿ1ST
j Bh�g dr: �8�

Fast methods for evaluating these integrals for the case of

Gaussian basis functions are known (Jayatilaka, 1994). Hall

has described how to obtain the symmetry operators

f�B�ÿ1ST
j B; rjg for any crystal space group (Hall, 1981).

There are two important factors that have been neglected in

the above calculation. The ®rst is that, in a real crystal, the

atoms are in motion and this thermal motion smears the

charge density from that calculated in a ®xed nucleus calcu-

lation. Although this motion can be calculated, in this work

the thermal motion is treated in the same way as in standard

experimental analyses of X-ray data (Kurki-Suonio, 1968;

Hirshfeld, 1971; Stewart, 1972; Hansen & Coppens, 1978).

That is, some parameters t�� are introduced at the stage of the

Fourier transform of the basis functions. Then the formula for

I��;h must be replaced by

�I���h� �
PNm

j

exp�2�irj�t����B�ÿ1ST
j Bh�

� R g��r�g��r� expf2�ir � B��B�ÿ1ST
j Bh�g dr: �9�

There are a number of speci®c choices for the thermal par-

ameters (Stewart, 1969; Coppens, Willoughby & Csonka, 1971;

Tanaka, 1988). For example, the form recommended by

Stewart (1969) is

t���h� � exp�ÿ2�2��Bh�T�U� �U���Bh��; �10�
which are expressed in terms of the thermal-vibration par-

ameters U� obtained from the X-ray experiment for the atom

on which basis function g� is centered. The factor � is 1
2 if the

motions of atoms � and � are `correlated', or 1
4 if `uncorre-

lated'. In this work, atoms were deemed correlated if they

were `bonded'. That is, less than 2.5 Bohr apart. A technical

point to note in the application of the above formula is that

these thermal matrices are not in the conventional cell axis

form used in standard crystallographic programs such as Xtal

(Hall et al., 2000). To convert between the two coordinate

systems, we use

U� � DLU�
cell�DL�T; �11�

where U�
cell is the thermal matrix in conventional cell-axis

form, D � �BT�ÿ1 is the direct matrix, containing the lattice

constants, and L is the diagonal matrix containing the

magnitudes of the reciprocal-lattice vectors.

The second factor that must be taken into account is

the phenomenon of `secondary extinction', which must be

corrected before comparison with experiment. This effect has

been analyzed in great detail by a number of authors. Here

we have used the simplest method, which is most commonly

adopted by experimentalists, that of Larson (1970),

F��h� � ��h�Fc�h� �12�

��h� � k 1� "jFc�h�j2 cos2 2��h� � 1

1� cos 2��h� sin 2��h�
� �ÿ1=4

: �13�

�(h) is the angle between the incident radiation and the

diffracting plane. k is an overall scale factor. It is required

since the absolute scale is not always well de®ned in the X-ray

experiment. (It is customary to scale the calculated structure

factors even though it is the observed structure factors that are

not on an absolute scale.) " is the extinction coef®cient. Both k

and " are calculated to ensure the best agreement between the

calculated and observed structure factors. Exactly what is

meant by `best agreement' will be de®ned shortly. It is the

thermally corrected and extinction-corrected structure factors

given above that are to be compared to experiment.

4.3. Calculation of the X-ray structure factors in the case of
symmetry-non-unique fragments

In the previous section, it was assumed that the density in

the crystal is regarded as a superposition of a single repeating

unit through space. However, it is well known that the choice

of the shape and size of the repeating unit is not de®ned. To

see that the size of the repeating unit is ill-de®ned, simply join



two units together and multiply the density by one half. The

result is a new unit, which when repeated will yield the original

crystal density.

Normally, we choose the smallest possible repeating unit

but, in some circumstances (for example, when one wishes to

represent the crystal by repeating a fragment comprised of a

cluster of molecular units, perhaps when intermolecular

contacts between molecules in the cluster may be known to

cause signi®cant changes in the molecular density), it may be

better to choose a larger unit. We call this larger unit over-

sampled with respect to the smallest repeating unit. The

oversampled repeating unit can be written, in general, as

�0 �P
A
�1=nA��A; �14�

where �A are the densities associated with different regionsA,

each region having been oversampled by a factor nA. In the

example discussed above, �A1 and �A2 refer to the two units,

while the oversampling factor is nA1
� nA2

� 2. Of course, the

true density of the larger region is just the sum of the indivi-

dual regions,

� �P
A
�A: �15�

It is � that is generated from the fragment wavefunction via

equation (4). Note that � is not necessarily the same as �0. It is

�0 that generates the crystal density when repeated through

space, and so it is the Fourier transform of �0 that is required

for the structure factors.

There is no unique way to de®ne the individual regions �A.

Here we consider one possible de®nition based on a basis-

function partitioning of space into regions. Suppose we have a

density �, which represents the true density of an oversampled

region, and suppose it is expanded in terms of basis-function

products as in (6). We de®ne the density of a particular region

A as

�A �P
�;�

P��g�g�f
A
��; �16�

where fA�� is the proportion of the density P��g�g� assigned to

region A. From (15), we must haveP
A

fA�� � 1: �17�

A problem occurs when one basis function is in A and the

other is not, as the density must be shared between the two

regions. The simplest division, originally due to McWeeny

(1951) and Mulliken (1955), is to share the density evenly,

fA�� �
1 if g�; g� 2 A
1=2 if only one of g� or g� 2 A
0 otherwise

(
�18�

or, more concisely,

fA�� �
P

2A

1
2 ���;
 � ��;
�; �19�

where 
 2 A are the indices of the basis functions in regionA.

Instead of equal sharing of the density, a better partitioning

might involve more density associated with one particular

region than another,

fA�� �
P

2A
�1=��� � ���������;
 � ����;
�: �20�

In other words, the share of the density allocated to a region

depends on the contribution of the basis functions g� and g� to

the product g�g� according to the factors �� and ��. Clearly,

the factors �� and �� must be chosen according to some

reasonable criterion. If the basis functions are Gaussians, then

the factors may be chosen to be the Gaussian exponents of g�
and g�. Since the product of two Gaussians is itself a Gaussian,

this choice corresponds to weighting the sharing according to

the distance that the product Gaussian lies along the vector

separating the centers of the two basis functions, a scheme

already proposed by Tanaka (1988). Substitution of (20) into

(16) and (14) then gives

�0 �
X
��

P��g�g�
1

�� � ��
��
n�
� ��

n�

� �
: �21�

Here n� is the oversampling factor for the region in which the

basis function g� is centered.

Calculation of the structure factors is a straightforward

modi®cation of the previous development. The structure

factors are given by

Fc�h� � tr ~PI�h� � tr P~I�h�; �22�
where

~P�;� �
P
A
�1=nA�fA��P�� �23�

~I�;��h� �
P
A
�1=nA�fA�� ~I���h�: �24�

To use these formulae, we need only de®ne which regions each

basis function belongs to. Since each basis function is usually

centered on an atom, this corresponds to de®ning the region to

which each atom belongs. The oversampling factor nA for each

region can be obtained by evaluating how many times the

region is mapped into itself under the space-group operations.

Once these factors are available, the modi®ed Fourier inte-

grals ~I�h� (or density ~P) used to calculate the structure factors

are easily calculated from the unmodi®ed ones, I�h� (or P).

4.4. The choice of agreement statistic

In this work we choose to use the weighted �2 statistic as a

quantitative measure of the ®tting accuracy,

�2 � 1

Nr ÿ Np

XNr

h

�F�h� ÿ F��h��2
�2�h� ; �25�

where Nr is the number of re¯ections and Np is the number of

adjustable ®tting parameters used in the model, which in our

case is 1 (see below). A �2 value of 0 means perfect agreement,

while �2 � 1 means that, on average, all calculated values

agree to within one standard deviation of the experimentally

observed scattering data F�h�. It does not make sense to ®t the
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experimental data any better than this. The �2 error measure

depends on the choice of orbitals in the isolated fragment via

the formulas (7) and (22). It also depends on the overall scale

factor k and the extinction parameter g in equations (12) and

(13).

4.5. Fitting the wavefunction to the observed structure
factors

The wavefunction-®tting technique we use is governed by

one parameter, a Lagrange multiplier �. Different values of �
lead to different errors in the ®t and the value used is the one

that leads to the desired level of ®t. There are many wave-

functions that have this degree of error but the one chosen is

that which minimizes the Hartree±Fock fragment wavefunc-

tion energy and which is constrained to give the observed

X-ray data to within the desired level, quanti®ed by the

agreement statistic. Thus, the quantity that is minimized is the

Lagrange function

L�c; ""; �� � E�c; ""� ÿ ���2�c� ÿ��: �26�
E is the usual Hartree±Fock energy expression, including the

variables c, which are the molecular-orbital coef®cients,

expressed in a certain basis set, and the "", which are the

Lagrange multipliers associated with the orbital orthogonality

constraints. � is the desired error in the �2. If the last term in

the equation above were not present, we would simply recover

the usual Hartree±Fock (HF) equations. The presence of the

last term merely adds an extra contribution to the Fock matrix,

yielding the equations

~fc � Sc"": �27�
S�� � hg�jg�i is the overlap matrix and the modi®ed Fock

matrix is

~f � f ÿ � 2

Nr ÿ Np

XNr

h

Fh ÿ F��h�
�2�h� ��h�I�h�; �28�

where f is the usual Fock matrix. These equations are solved in

the usual self-consistent way, the Lagrange multiplier � being

chosen large enough to give the desired agreement � with

experiment. (Note that as � becomes larger the error �2

becomes smaller.) As for normal HF equations, there will be

Nocc `occupied' orbitals co and a number of `virtual' orbitals cv.

We can write c � �cocv�. As already stated, the scaling par-

ameter k and the extinction parameter g are chosen to mini-

mize the �2 error measure.

Note that, if we desired to use the non-interacting Kohn±

Sham fragment model for the crystal, we need only replace the

Fock matrix f by the kinetic-energy operator. Similarly, we

could also follow Parr and co-workers in using the operator

comprised of the kinetic energy plus the external potential of

the nuclei (Zhao & Parr, 1992, 1993; Zhao et al., 1994). In this

way, other models based on a single-determinant wavefunc-

tion Ansatz are easily incorporated. While we have concen-

trated on the X-ray scattering experiment, other scattering

experiments may also be modeled, provided that one can

express the observations in the form of equations (7) or (22).

It should also be mentioned that the above development is not

restricted to one set of measurements. The equations gener-

alize in an obvious way if simultaneous ®ts are desired for

more than one experiment. The only difference is that more

than one Lagrange multiplier needs to be used.

Although the orbitals within each crystal fragment are

orthogonal, the orbitals between fragments related by

symmetry are not orthogonal. (This is particularly clear when

dealing with symmetry-non-unique fragments, where after a

crystal symmetry operation atoms in one part of the trans-

formed fragment may occupy the same positions as some

atoms in the original untransformed fragment.) As a conse-

quence, one cannot construct a valid single-determinant

wavefunction from the set of all fragment orbitals.

In the case of symmetry-unique fragments, it is possible to

add an extra constraint to the Fock equation (28) above to

force the fragment orbitals to be orthogonal to nearby crystal-

symmetry transformed orbitals. If such a constraint can be

successfully applied, the resulting localized orthogonal crystal

fragment orbitals can be used to construct a valid single-

determinant wavefunction for the entire crystal. This has been

performed already by Jayatilaka (1998) and Shukla et al.

(1996, 1998). The latter authors have performed full crystal

calculations using these Wannier-like localized orbitals.

In practical applications, convergence problems are

observed when solving (28) and these must be addressed. The

convergence problems appear because, as � becomes larger, f

becomes small compared to ~f ÿ f and the solution of (27)

becomes like a least-squares ®t, which is a singular problem if

there are less data than parameters. Using real data with

normal basis sets, ~f ÿ f is unlikely to go to zero as � gets larger.

That is, as � gets larger, the �2 is unlikely to go to zero because

the basis set may be insuf®ciently ¯exible to model all possible

types of density distribution. Thus, the solution of the modi®ed

Hartree±Fock equations becomes increasingly ill-conditioned.

To alleviate this problem, we have employed the convergence

acceleration technique of Pulay (1982). Alternatively, (27) can

be recast as follows. The occupied±occupied and virtual±

virtual blocks of cT ~fc are arbitrary in that they do not affect

the Hartree±Fock energy. Replace these blocks by the corre-

sponding blocks of cT fc that have been scaled by �. Now

divide the result by � and make the substitution ""=�! "". This

is allowed since both are Lagrange multipliers. We then obtain

~f�c � Sc""; �29�

where ~f� has had its occupied±unoccupied blocks scaled by

1=�,

cT ~f�c � �co0�Tf�co0� � �0cv�Tf�0cv�
� �1=����0cv�T ~f�co0� � �co0�T ~f�0cv��: �30�

0 stands for the zero matrix of the same dimensions as co or cv.

It should be noted that, while such a transformation does not

change the Hartree±Fock energy for a given �, the value of �2

obtained will be altered because this is dependent on the

choice of the form of the occupied±occupied block of ~f.



4.6. Criticisms and cautions to be observed with the model

With any ®tting procedure, it is important to check that,

after an appropriate ®t is obtained, the results are reasonable

in the sense that none of the original assumptions made in the

®t model are invalid. Speci®cally, we must assess whether the

change in the Hartree±Fock energy is within reasonable limits

and, perhaps what amounts to the same thing, the Fock matrix

f evaluated at the ®nal ®tted orbitals is not very different from

the original Fock matrix. Another solution is to perform a

`sensitivity analysis'. That is, to redo the ®tting procedure

using experimental data that has been modi®ed to lie within

the proposed error bars.

The use of a Hartree±Fock model for each fragment is

certainly limited. It might be conceivable in the near future to

extend the method to use a con®guration interaction wave-

function or perhaps a single-determinant wavefunction based

on density-functional theory.

The most serious problem, for non-molecular crystals (or

molecular crystals with strong intermolecular interactions) is

the use of the non-interacting fragment wavefunctions. To deal

with this issue, a method is needed that treats the crystal as a

whole. Such methods exist and are relatively common (see, for

example, Pisani, 1996). A further advantage of a crystal

approach rather than a fragment approach is that the arti®cial

separations used for non-unique fragments need not be made.

However, even if one uses this level of approximation, the

problems of correcting for thermal motion and extinction,

which are based on an a priori pseudo-atom assumption, will

remain.

5. Conclusions

There are many points to commend the method of extracting

an experimental wavefunction proposed here:

(i) By using a trial wavefunction, a priori `quantum

knowledge' is built into the model.

(ii) The model is systematically improvable, in principle.

(iii) The problem of having suf®cient data to ®t to does not

arise.

(iv) The model always gives a unique answer using a ®nite

or in®nite basis set.

(v) The model can be used to model different experiments

simultaneously.

(vi) Comparison between the model and ab initio calcula-

tions are greatly facilitated since one starts with the ab initio

calculation as the zero-order model.

(vii) The form of the equations will usually involve a

straightforward modi®cation of variational procedure used to

determine the trial wavefunction

While having many advantages, the method of charge

analysis described is not a replacement for other methods of

analysis. The reason is that, in practice, one is limited by

computational resources in how far one can improve a parti-

cular wavefunction Ansatz. Thus, built-in assumptions appear

due to the truncation of the method to a particular wave-

function and these cannot be easily be removed. Thus, it is still

important to compare the results of a wavefunction analysis

with other kinds of analysis for self-consistency. Nevertheless,

the scheme proposed is a useful paradigm for improving the

results of any wavefunction calculation and for providing a

uni®ed framework for interpreting a number of diverse scat-

tering experiments.

In the following paper, the method described here is applied

to obtain a wavefunction from the X-ray data for oxalic acid

dihydrate.
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